Non-native Aquatic Plant Identification, Monitoring and Management

The 9th Annual MiCorps Conference: Monitoring Michigan's Lakes and Streams through Citizen Science Ralph A. MacMullan Conference Center Higgins Lake, Michigan

October 28, 2013

Lisa E. Huberty, PhD

Michigan Department of Environmental Quality

Water Resources Division

Aquatic Nuisance Control Program

Overview

- Non-native aquatic plant identification
- Aquatic vegetation survey methodology and the interpretation of aquatic vegetation survey data
- Strengths and challenges of different methods of aquatic plant management

Part 1: Non-native aquatic plant identification

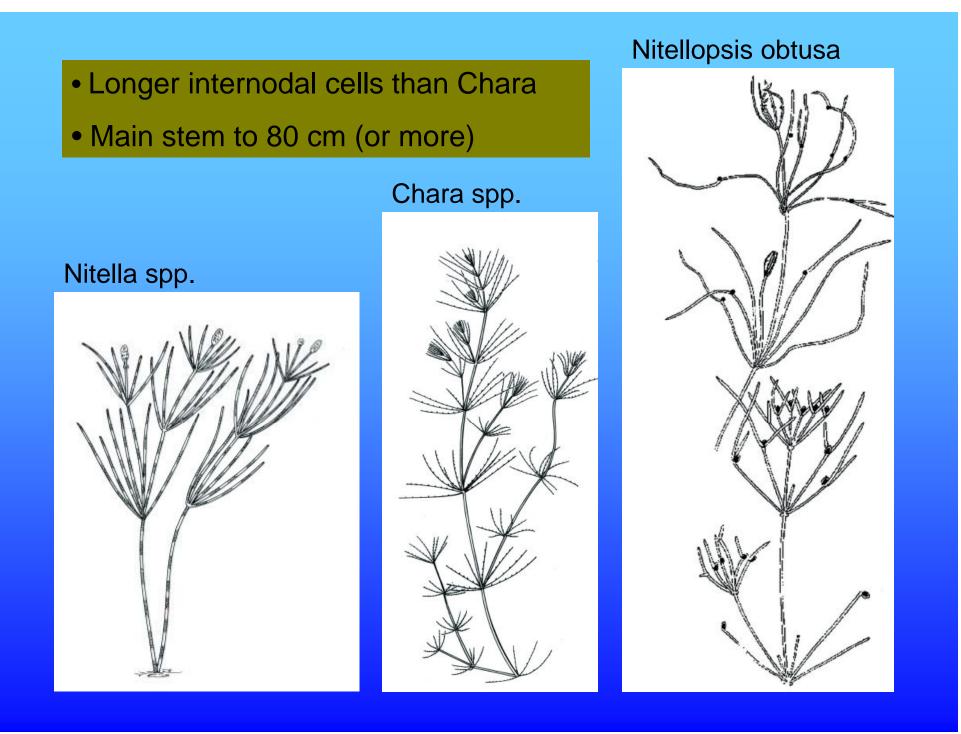
Objectives:

- Using three examples, demonstrate approaches to distinguishing between non-native species and their native look-alikes
- Summarize genetic identification of non-native watermilfoil
- Share aquatic plant identification resources

Fanwort (Cabomba caroliniana)

Leaves opposite on stem Finely divided and fan-shaped Attached to stem by short stalks

Small white flower


Cabomba look-alikes

Watermilfoil	Four leaves in a whorl each divided into leaflets
Coontail	5-12 leaves in whorls Leaves forked Toothed along margins
White water crowfoot	Leaves are alternate on the stem
Water marigold	Leaves are whorled

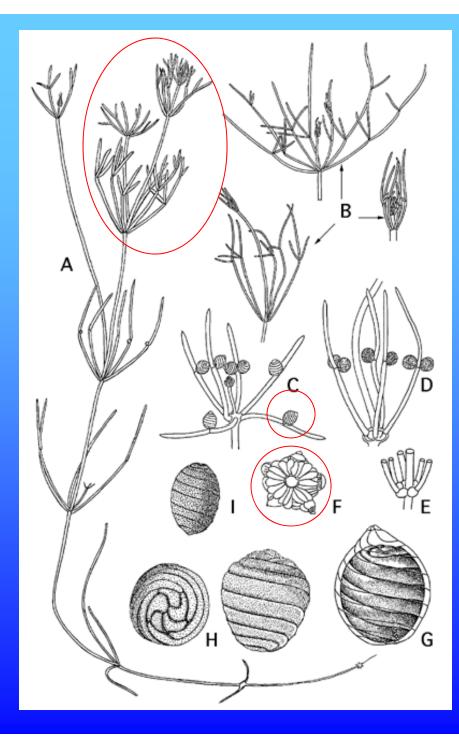
- Appears lighter, brighter green than Chara
- Irregular branching pattern makes it look disheveled

Photos by Doug Pullman

• Grows at greater depth and to greater height than Chara

• Can form dense mats that completely cover lake bottom – a benthic barrier

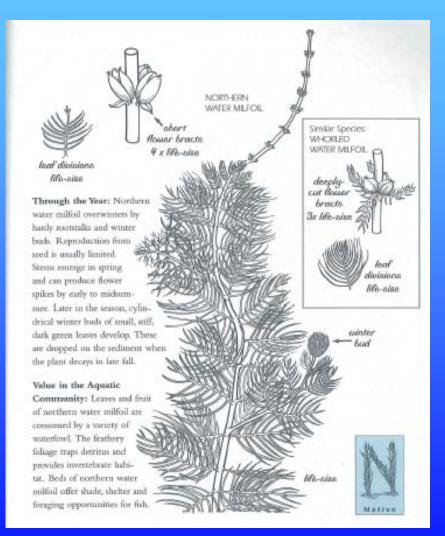
Photo by Doug Pullman


• Creamy white bulbils at base of main axis

• Dioecious

• Dark red gametangia on branches at nodes


Photo by Doug Pullman


We don't know how starry stonewort is spread within and between inland lakes.

Reproduction and candidates for dispersal

- Oospores
- Starry bulbils
- Fragments

Distinguishing native and non-native watermilfoil

1 to 4 y in a s most producganic sediment . Low light ures promote

milfoil

rasian water winter bods. any overwinter. sprouts on the gin early in the rratures are still rowing in shalsurface within growing in ach the surface season. Hower the stems reach ing and fruit he stems break fragments can d take root. If occurs early in ay be repeated d Barko 1990). Community:

and foliage to

Look: And dualions Me nite Itom to native range in Europe and Ala. Its fast growing thoos and extensive comop formation can obtiruit recreation and navigation. The duility to grow in cod vestar gives it a quart water in the upting European water millior effen covers and shades native plants, giving it a competitive advantage.

Eurasian water milled has been the target of many management strate girs ranging from harvesting to herbicides. There has recently been some evidence that a native weeval (Eukrashionsis) leaseful) may provide a biotopical control. This priv aquatic weevil. has been associated with some natural declines of flutions' Boltan visitive Including Brownington Pand, Vermont

life-size

Distinguishing between native and non-native watermilfoil

	Eurasian	Northern
Number of leaflets	14-20 pairs of leaflets	5-12 pairs of leaflets
Length of leaflets	Leaflets of similar length	Lower leaflets longer than upper leaflets
Winter bud	No winter bud	Winter bud
Growth form	Branched canopy	Not branched canopy

Hybrids happen

Eurasian watermilfoil x Northern watermilfoil Myriophyllum spicatum x Myriophyllum sibiricum

Hybrid watermilfoil

- EWM colonizes a lake with native watermilfoil, hybrid event occurs
- Hybrid watermilfoil colonizes a lake
- Data suggest multiple hybridization events in Michigan
- Changes over time within a lake can be rapid

Identification not possible in field

Characters in the field are not reliable

Genetic identification is the only reliable method of identification of watermilfoil

Samples of non-native watermilfoil from Upper Straits Lake, Oakland County

Genetic analysis in August 2012 indicates that Upper Straits Lake has both Eurasian and hybrid watermilfoil

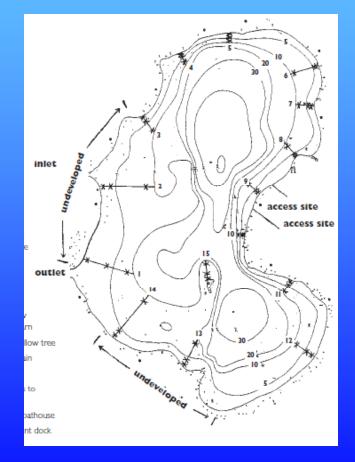
Lake Name: Upper Straits Lake Date Received: 8/6/12 # of Samples Sent: 9 # of Samples Processed: 7 Genetic IDs: E. of Kaueman Res.- 1 Eurasian watermilfoil (Myriophyllum spicatum); Front of Laimbeer Res.- 2 Eurasian watermilfoil (Myriophyllum spicatum); Front of Nature Sanc.- 1 Hybrid (Myriophyllum spicatum x Myriophyllum sibiricum); Point of Elmgate Bay- 1 Eurasian watermilfoil (Myriophyllum spicatum); Front of Boerger Res.- 1 Hybrid (Myriophyllum spicatum x Myriophyllum sibiricum); Whispering Pines Beach Front- 1 Hybrid (Myriophyllum spicatum x Myriophyllum sibiricum) Two of your samples didn't work because of poor DNA quality: 1 from Between Laimbeer Res and Nature Sanc, and the other from Point of R.C. Bankers Penin.

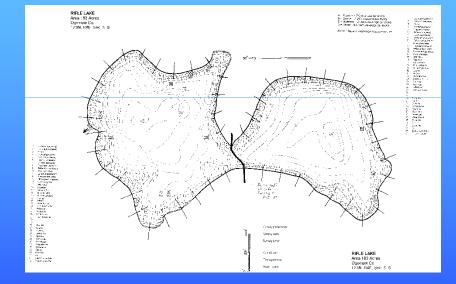
Resources for non-native aquatic vegetation identification

- A Michigan Boater's Guide to Selected Invasive Aquatic Plants http://web2.msue.msu.edu/bulletins2/product/a-michigan-boatersguide-to-selected-invasive-aquatic-plants-1387.cfm
- A Field Guide to Invasive Plants of Aquatic and Wetland Habitats for Michigan http://mnfi.anr.msu.edu/pub/publications.cfm
- Aquatic Plants of the Upper Midwest: A Photographic Guide to Our Underwater Forests
 http://www4.uwsp.edu/cnr/uwexlakes/publications/aquaticPlantsWi/aqu

aticPlantsUpperMidwest.asp

• Through the Looking Glass: A Field Guide to Aquatic Plants

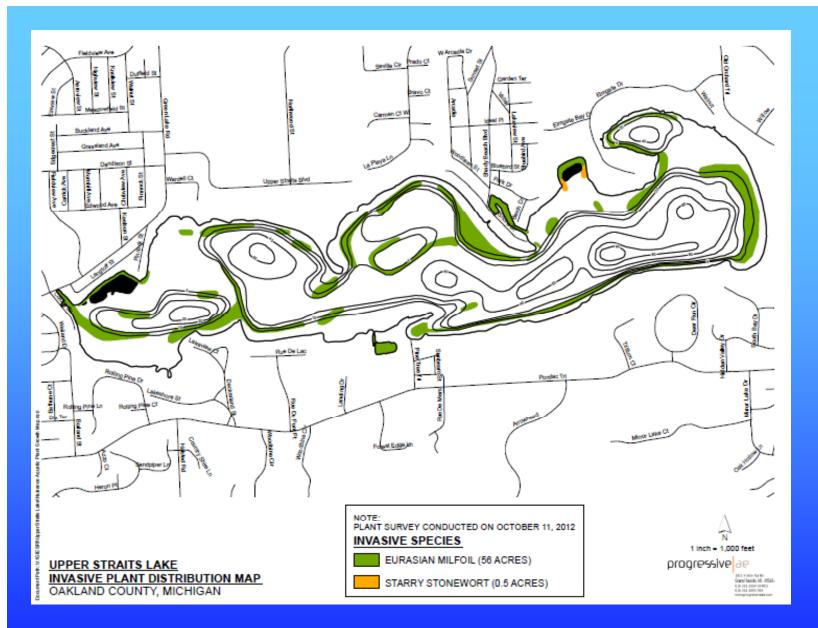

Part 2: Aquatic vegetation surveys and monitoring


- Aquatic vegetation survey methodologies
- Survey data and summaries
- Using data summaries to evaluate management programs

MiCorps

www.micorps.net/CLMPdocuments.html

Sample at 1, 4, 8 feet depth at multiple transects

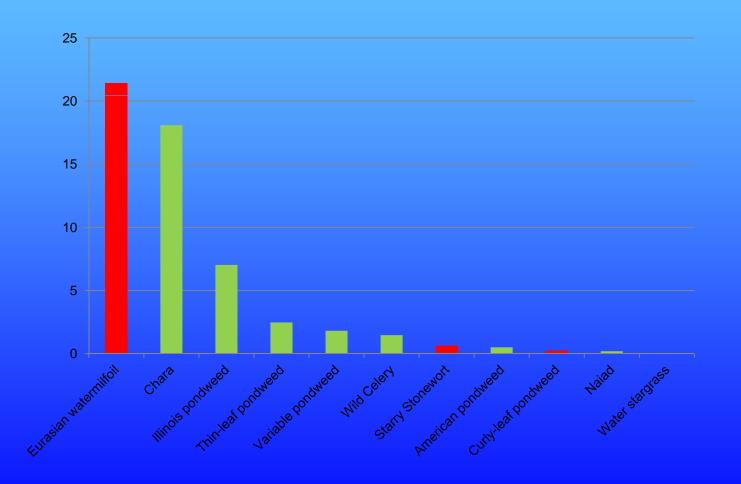


DEQ – ANC Program www.michigan.gov/anc AVAS survey procedure

Common aspects of vegetation sampling methods

	MiCORPS/CLMP	DEQ-WRD-ANC		
Spatial sampling	Transects at 1, 4, 8 feet with number based on size of lake	Shoreline segments with surveyors weaving the littoral zone		
Identification of species	On rake	On rake and by eye		
Estimation of density of each species	Found, sparse, moderate heavy, dense based on presence in 4 casts of the rake at each sample point	Found, sparse, common dense based on estimate of percent of area covered by species		
Distribution	Percent of sample sites where species was found	Percent of sample sites where species was found		
Distribution and abundance (distribution weighted by density)	Lakewide density rating	Cumulative cover value		

	A	В	С	D	E	F	G	Н	I	J	К	L	M	N	0	P	G
1	LAKE	NAME-						C	OUNTY	UNTY-				SURVEY	DAT	È:	
2																	
3	3 Standard Aquatic Vegetation Summary Sheet					SURVE	Y BY:										
4																	1
5												Sum of	Total	Quotient of			
6			Tota	Inumb	er of A	AVAS'	5	Calculatio	ns			Previous	Number	Column 9			
7			for e	ach De	nsity (Catage	ory	Catagory	Catagory	Catagory	Catagory	Four	of	divided by			
8			A	в	C	D		As1	B x10	C x 40	D x 80	Columns	AVAS'S	Column 10			1
9	Code	Plant Name													Code	Plant Name	
10	No		1	2	3	4		5	6	7	8	9	10	11	No		
11																	
12	1	Eurasian milfoil				20		0	0	0	1600	1600	20	80.0	1	Eurasian milfoil	
13	2	Curly leaf pondweed						0	0	0	0	0	20	0.0	2	Curly leaf pondweed	
14	3	Chara				5		0	0	0	400	400	20	20.0	3	Chara	
15	4	Thinleaf pondweed	1					1	0	0	0	1	20	0.1	4	Thinleaf pondweed	
16	5	Flatstem pondweed						0	0	0	0	0	20	0.0	5	Flatstem pondweed	
17																	
18	6	Robbins pondweed						0	0	0	0	0	20	0.0	6	Robbins pondweed	
19	7	Variable pondweed						0	0	0	0	0	20	0.0	7	Variable pondweed	
20	8	Whitestem pondweed						0	0	0	0	0	20	0.0	8	Whitestem pondweed	
21	9	Richardsons pondweed						0	0	0	0	0	20	0.0	9	Richardsons pondweed	
22	10	Illinois pondweed						0	0	0	0	0	20	0.0	10	Illinois pondweed	
23																	
24	11	Large leaf pondweed						0	0	0	0	0	20	0.0	11	Large leaf pondweed	
25	12	American pondweed						0	0	0	0	0	20	0.0	12	American pondweed	
26	13	Floating leaf pondweed						0	0	0	0	0	20	0.0	13	Floating leaf pondweed	
27	14	Water stargrass						0	0	0	0	0	20	0.0	14	Water stargrass	
28	15	Wild Celery						0	0	0	0	0	20	0.0	15	Wild Celery	
29																	
30	16	Sagitteria						0	0	0	0	0	20	0.0	16	Sagitteria	
- 31	17	Northern milfoil						0	0	0	0	0	20	0.0	17	Northern milfoil	
32	18	M. verticillatum						0	0	0	0	0	20	0.0	18	M. verticillatum	
33	19	M. herterophyllum						0	0	0	0	0	20	0.0	19	M. herterophyllum	
34	20	Coontail						0	0	0	0	0	20	0.0	20	Coontail	
35																	
36	21	Elodea						0	0	0	0	0	20	0.0	- 21	Elodea	
37	22	Utricularia spp.						0	0	0	0	0	20	0.0	22	Utricularia spp.	
38	23	Bladderwort-mini						0	0	0	0	0	20	0.0	23	Bladderwort-mini	
39	24	Buttercup						0	0	0	0	0	20	0.0	- 24	Buttercup	
40	25	Najas spp.						0	0	0	0	0	20	0.0	25	Najas spp.	
																	1


2012 non-native watermilfoil and starry stonewort map provided courtesy of Paul Hausler, Progressive AE

Non-native watermilfoil was widely distributed in Upper Straits Lake in the October 2012 vegetation survey

Percent of sample sites where species was observed **October 2012** 90 80 70 60 50 40 30 20 10 Eussian watermitoi 0 Hoil pondweed pordweed pondweed Her startrast Whid Celery Stonework pondweed pondweed Starry Stonework American pondweed

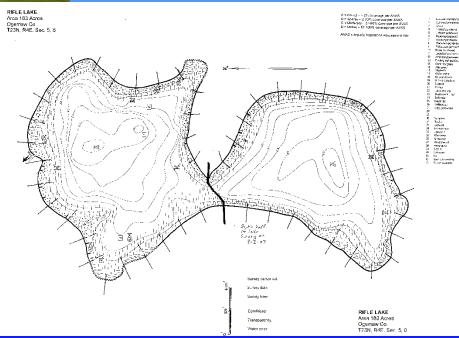
Non-native watermilfoil dominated the plant community in terms of both distribution and abundance

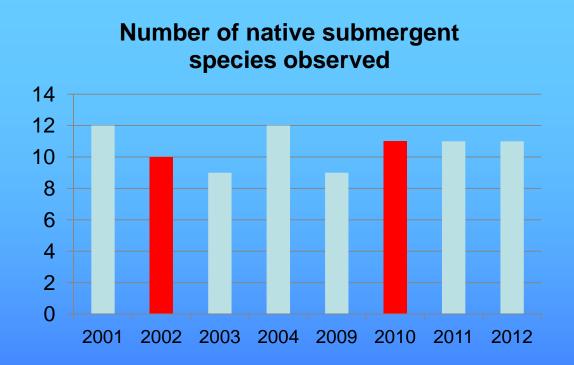
Cumulative cover values 2012 Upper Straits Lake, Oakland County

Efficacy of fluridone treatments of non-native milfoil

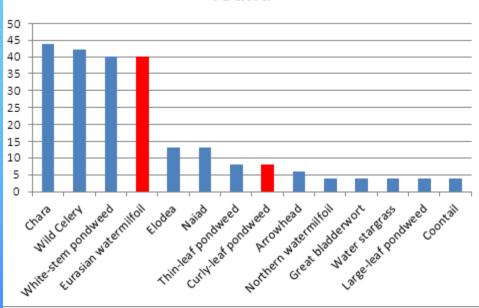
Aquatic plant management history

- 1995 8 ppb fluridone
- 2002 6 bump 6 ppb fluridone
- 2007 2009 contacts, no systemics
- 2010 6 bump 6 ppb fluridone
- 2011 no targeting milfoil?
- 2012 contacts early season, systemics late season
- Harvesting in late 1900's?

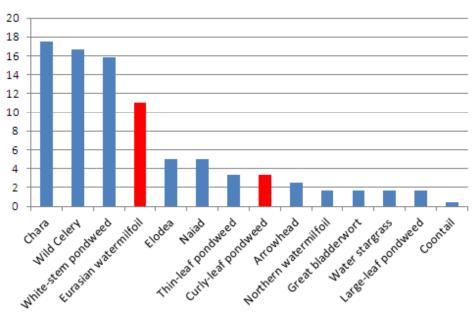

		< 2 %	2-20 %	21-60 %	<mark>> 60</mark> %			
	YEAR	а	b	с	d	сс	%AVAS	#AVAS sites
	2001	0	9	9	1	11.04	40	48
	2002	0	0	0	0	0	0	48
	2003	0	0	0	0	0	0	56
	2004	0	0	0	0	0	0	58
	2009	9	25	11	4	14.77	71	69
	2010	0	0	0	0	0	0	81
	2011	0	0	0	0	0	0	67
	2012	5	20	12	0	7.78	42	88



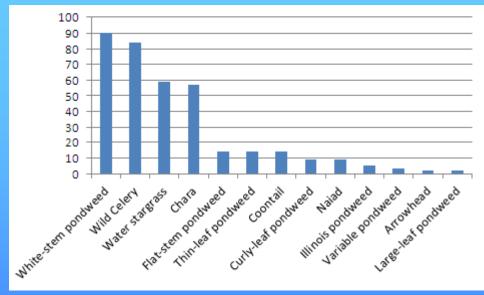
Native species abundance response


Photo by Doug Pullman

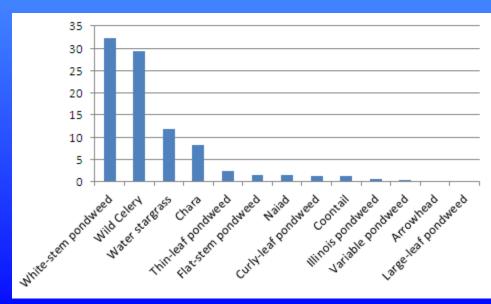
A = Found	< 2 % coverage per sample site	
B = Sparse	2-20 % coverage per sample site	
C = Moderate	21-60 % coverage per sample site	5 .91
D = Dense	61-100% coverage per sample site	
		Organization O



- 18 native submerged species observed over eight years of surveying
- Between 9 and 12 species observed each year of sampling don't find all species in all years


Percent AVAS sites where species was found

Cumulative cover


2001

- Non-native watermilfoil is codominant with native species
- Occurred in 40 percent of AVAS sites
- 12 native species present
- Use the shape of the bars to assess the plant community
- Fluridone permitted at 6 bump 6 ppb

Percent AVAS sites where species was found

Cumulative cover value

2004 – third year following spring treatment

- 12 native species
- White stem, celery, water stargrass, Chara codominant
- Non-native watermilfoil successfully spot treated with contacts and/or systemics

With vegetation survey results

- Communicate problem to stakeholders, agencies, and permitting program
- Assess treatment options based on density and distribution of non-native species
- Evaluate treatment efficacy and overall program success
- Be prepared in anticipation of improved treatment technologies

It pays to invest in learning to do vegetation surveys or raise the budget to hire a consultant.

Part 3: Aquatic plant management options

- Summarize biological, chemical, physical methods of plant management
- Aquatic herbicide safety
- Defining plant control
- Strengths and challenges of methods of aquatic plant management focusing on non-native watermilfoil

Management options for non-native watermilfoil

- Biological
 - Milfoil weevils
- Physical
 - Suction harvesting, machine harvesting, hand pulling
- Chemical
 - Contact herbicides
 - Systemic herbicides
 - 2,4-D, triclopyr, fluridone

Aquatic herbicide safety

- EPA registration process under the Federal Insecticide, Fungicide, and Rodenticide Act 1947
 - Toxicity to humans, chemistry, fate, ecological toxicity
 - Registration review
- It is a violation of federal law for any person to use any registered pesticide in a manner inconsistent with label directions.
- DEQ Water Toxics Unit reviews all aquatic algaecides and herbicides prior to approval on ANC permits

Defining aquatic plant control

- Aquatic Plant Management Society
 - "techniques used alone or in combination that result in a timely, consistent and substantial reduction of a target plant population to levels that alleviate an existing or potential impairment to the uses or functions of the watebody"
- Resource managers and stakeholders must establish expectations

Levels of aquatic plant control

- No attempt to control
- Control efforts to eradicate a plant species
 - Sustained, multi-year, can be small scale, may be expensive per acre, sustained monitoring is key
- Intermediate control that is incomplete or temporary

Strengths and challenges of methods of aquatic plant management

Mechanical harvesting

Photo by Progressive AE

Chemical treatment

DEQ – Aquatic Nuisance Control Program Contact information

e-mail: deq-wrd-anc@michigan.gov ANC Program: 517-284-5593 web address: www.michigan.gov/anc

Lisa's telephone: 517-331-5226 Lisa's e-mail: hubertyl@michigan.gov

www.gvsu.edu/wri/thum/milfoil-genetic-identification-services-15.htm

Two documents

- 1. Chain of custody record
- 2. Collection and shipping protocol

Why invest in genetic analysis of watermilfoil?

	Hybrid identification is <u>un</u> known	Hybrid identification is known
Herbicide treatment response is typical	No problem	No problem
Herbicide treatment response is <u>a</u> typical	Potential accountability problem	Prepared for next diagnostic steps as technology develops

Acknowledgements

- Dr. Ryan Thum, Grand Valley State University
- Dr. Michael Netherland, US Army ERDC
- Dr. Mark Heilman, SePRO
- Dr. Doug Pullman, Aquest
- Paul Hausler and Pam Tyning, Progressive AE
- Aquatic Nuisance Control Program staff
 - Tom Alwin, Eric Bacon, Amanda Whitscell, Brett Wiseley

Starry stonewort can be a problem in Michigan

- Can reach monoculture, nuisance level
- Can impede recreation
- May have significant ecological impacts
- Permitting treatment and managing the species in a vacuum of information about the ecology and impact of the species

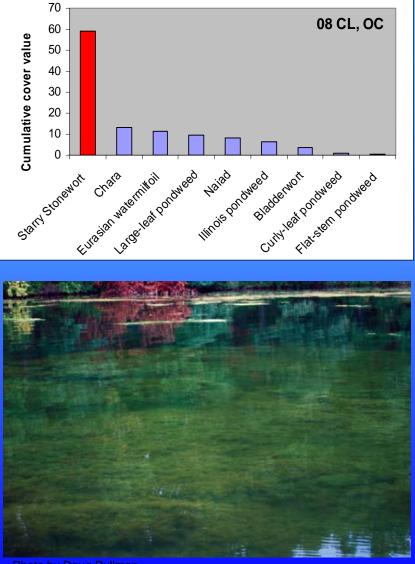
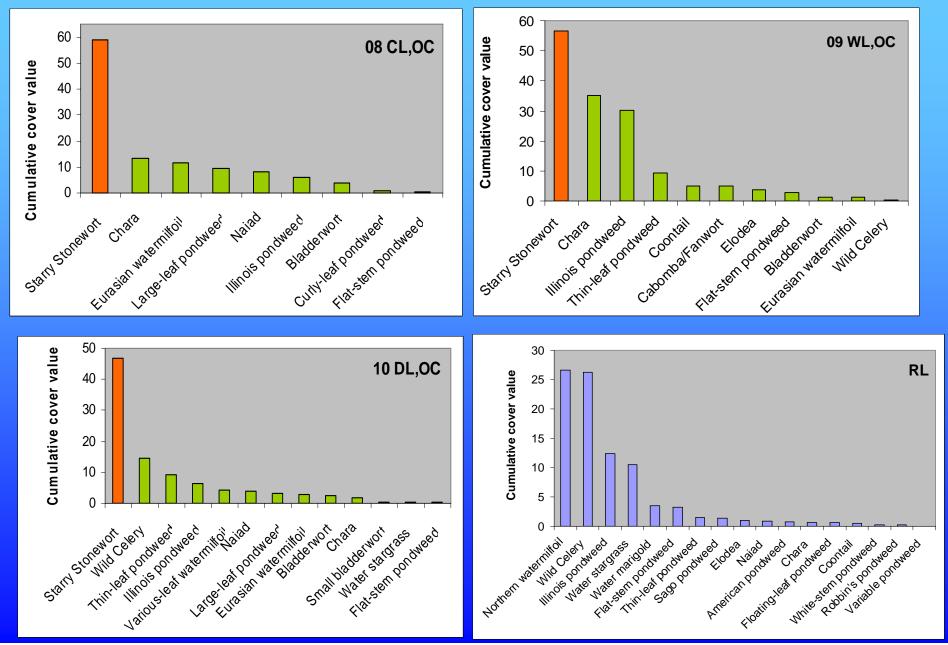



Photo by Doug Pullman

Starry stonewort can dominate the plant community

in terms of distribution and abundance.

Photos by Doug Pullman

In the absence of scientific information, managers are relying on anecdotal or local observations of impacts to fisheries and recreation and making a decision about treatment.

Acknowledgements

Aquatic pesticide applicators Dick Pinagel and Steve Zulinski Jason Broekstra, Jaimee Conroy, Andy Tomaszewski, BreAnne Grabill, and Steve Hansen Jeff Knox Lake Management Consultants **Doug Pullman Gary Crawford** Paul Hausler Pam Tyning Aquatic pesticide and plant management industry Mark Heilman, SePRO Richard Dirks and Doug Henderson, Remetrix Aquatic Nuisance Control Program Staff **Eric Bacon** Laura Esman Matt Preisser Jessica Koerner **Brett Wiseley** Tom Alwin Amanda Whitscell

