

Microplastics in our Streams

Paul Steen's initial explorations into a world of plastic

MiCorps Conference 2019

What are microplastics?

HRWC's social media/awareness campaign

 Three 60-second videos placed on Facebook, Instagram, and YouTube in 2019 (60,000 people reached)

We know from the scientific literature...

- They are in every aquatic system
- They have a high prevalence and density in the ocean and Great Lakes.
- They are in drinking water, bottled water, and beer, and presumably everything then, that is made of water.
- Microplastics are in dust.
- We consume a credit card worth of plastic each week (food and water, average across the world)
- Microplastic found in every stool sample from people in 8 countries around the world.
- 2016 USGS report says the Huron has the highest microplastic count of the major Great Lake tributaries.

We still don't really know...

- What all of this plastic does to the human body or to ecosystems.
- Evidence for: Obstruction of digestive system (insects). Free floating pollutants (PCBs, PAHs, heavy metals) adhere to plastic surfaces "toxic rafts". Plastic leachate can be endocrinedisrupters (affecting hormones).
- Severity of Primary Sources
 - Likely sources: Washing machines; wastewater treatment plants; degrading trash in the environment; pipes; drinking water treatment filters?
- Not really an issue for river folks: microbeads from soaps. They have been banned. HRWC has seen them a few times in river samples.

HRWC and Microplastics

Problem

- We know the Huron has high amounts of microplastics (USGS study)
- We don't know where it is all coming from
- Developed sampling technique are for big water, not creeks

Goal

- Scale down Great Lakes boat sampling to tiny creeks and medium river
- Sample across the Huron River Watershed
- Identify rivers/tributaries that are higher in plastics. "Hotspots"

Procedure

1000 gallons of water flow through a net and solids are captured in a device at the end. Solids are rinsed into a sample container with about 2 L of river water.

Sampling 32 locations from around the watershed; 2 samples each. Goal: Test procedures, locate hotspots

Huron River Watershed

Samples in all major creeks, close to mouth, and several in the main branch of the River.

Contamination

A new filter is checked up and cleaned under a microscope for contamination.

Dust usually drops 1-10 plastics fibers on a clean filter over a several hour period.

Throughout the lab process, filters are kept covered as much as possible.

Filter

Sample is filtered through a funnel and onto filter paper. Dried on a hot plate.

Count

Filter paper is studied under a scope and # and type of plastic pieces recorded.

Site 35: Millers Creek @Glazier Way

- Very clear water
- Baseflow measurement

Site 37: Portage Creek: Dexter-Townhall Rd

- Baseflow measurement
- Moderate sediment load

How to clean our equipment? Morphed into

How bad is the drinking water anyway?

	Count of Sample #1	Count of Sample #2
1. Air only (3 hours left out)	2	3
2. 2L Tap Water	27	16
3: 2L Distilled Water	6	1
4: 2L Spring Water	2	11
5: 2L Jason's House	3	9
6: 2L Jason's Mom's House	3	2
7: 2L Bottled Kroger	13	13

Take-aways:

- Use distilled water and not tap water to rinse the equipment.
- Air contamination is minor, perhaps negligible if we keep the samples covered.
- Wow, there is a lot of microplastics in my office's tap water (I need to do more samples)

Initial take-aways

- 1. We were able to scale down Big Lake sampling to creeks, and it seems to work.
- 2. We absolutely have plenty of plastic flowing through our systems.
- 3. I accidently discovered that microplastics are more concentrated in our drinking water vs. environmental water by a factor of somewhere between 100-500x. (Needs more work).
- 4. There is a lot of variation in between samples at the same site.

 Weather and flow are going to make a big difference in results.

 Sample more at hotspots; many samples throughout the summer.
- 5. Processing samples is very time consuming, and the project needs dedicated funding to do it justice and produce more solid results.

