

Chlorophyll-a, an algae indicator 10:30 am -- 11:45 am

COOPERATIVE LAKES MONITORING PROGRAM TRAINING FOR

Chlorophyll-a

Paul Steen

Huron River Watershed Council

1100 N. Main Street Ann Arbor, MI 48104

psteen@hrwc.org

Chlorophyll a Training Outline

- What is chlorophyll?
- Schedule
- Water Collection
- Sample filtering and turn in
- End of the year data report

CHLOROPHYLL-A

What is Chlorophyll-a?

MICHIGAN STATE

Trophic State Indicators

 Transparency
Total Phosphorus
Chlorophyll a
Dissolved Oxygen and Temperature

CHLOROPHYLL-A

Sampling Schedule

MICHIGAN STATE

micorps.net \rightarrow Lakes \rightarrow CLMP documents

CHLOROPHYLL 2021 Sample Collection and Turn-in

Due to complications with COVID-19, we are still finalizing the turn-in locations and spring turn-in date. Please keep your samples frozen and we will notify you when the locations and dates have been determined.

*Important: Note that the sampling dates for Sample #5 differ from those of Samples #1 - #4. Add these dates to your calendar for easy reference.

COUNTY	TURN-IN ADDRESS (EGLE unless noted otherwise)	SAMPLING DATES	TURN-IN DATES
Allegan, Kalamazoo,		Sample #1 May 10-20 Sample #2 June 10-20	To Be Determined
Barry, Van Buren, Berrien, Cass, St. Joseph	To Be Determined	Sample #3 July 10-20 Sample #4 Aug 10-20 Sample #5 Sept 23-27	8 am-Noon September 28

Calhoun, Jackson,	TODOLULI	Sample #1 May 10-20 Sample #2 June 10-20	To Be Determined
Washtenaw, Branch, Hillsdale, Lenawee	To Be Determined	Sample #3 July 10-20	
Thisdure, centuree		Sample #4 Aug 10-20	8 am-Noon
		Sample #5 Sept 23-27	September 28

St. Clair, Macomb,		Sample #1 May 10-20 Sample #2 June 10-20	To Be Determined
Oakland, Wayne, Monroe	To Be Determined	Sample #3 July 10-20	
		Sample #4 Aug 10-20	8 am-Noon
		Sample #5 Sept 23-27	September 28

Michigan Clean Water Corps	CHLORO 2021 Data	PHYLL Form 1	Cooperative Lakes Monitoring Program
Lake Name:	County:	Tow	nship:
Lake Sampling Site (Field ID) Num	ber:	(see reverse a	and mark location on map) Circle
Latitude:	Longitude:		GPS / Map
Volunteer Monitor Name(s):			
Sampling Event #1 (May)		Date Sampled:	Time:
Secchi Depth :(feet)		Composite Sample	Depth:(feet)
Weather Conditions (sunny, cloud	dy, windy, etc.):_		
Unusual Conditions (heavy rain, b	oating, etc.):		
Filtering Sample (if 50 cc could not	be filtered for this	sample, indicate amo	unt filtered):
Sample 1: (cc) Sample 2:	(cc)	
Sampling Event #2 (June)		Date Sampled:	Time:
Secchi Depth : (feet)		Composite Sample	Depth: (feet)

Data Requirement: At least 4/5 months sampled per year. Lakes change over time!

Seasonal Succession of Lake Algae in a Mesotrophic Lake

Credit: Water on the Web

Chlorophyll Equipment

- Bag of equipment contains
 - -60 cc (ml) syringe
 - -filter holder
 - -filters (12-13) (in a baggy)
 - -tygon tube
 - -vials with caps (11)
 - -tweezers
 - -amber bottles (2)
 - -dropper bottle with MgCO₃ (labeled)
 - -zip-lock bags
 - -labels (11)
 - -clothes pin
- Weighted composite sampler (you provide the marked rope)

Blue = BAD

What is a re-supply kit?

- Filters (11-12) with warning label (in envelope). [Returning volunteers: Throw all old filters away]
- Vials with caps (11)
- Dropper bottle with MgCO₃ (labeled)
- Zip-lock bags
- Labels (11)

Chlorophyll Sampling Equipment

Provided by volunteer:

- boating safety equipment
- anchor
- pencil or indelible ink pen
- measured line for sampler
- freezer ice pack

CHLOROPHYLL-A

Step 1. Getting a depth integrated water sample

MICHIGAN STATE

Secchi Disk Measurement

NO SUNGLASSES!

2. Disk raised slowly to point where it reappears

3. Record: the secchi depth is average

	Michigan Clean Water Corps	CHLORC 2021 Data	PHYLL Form 1	Cooperative	e Lakes ng Program
	Lake Name:	County:	То	wnship:	
	Lake Sampling Site (Field ID) Numb	ber:	(see revers	e and mark location Circl	on map) e
	Latitude:	Longitude:		GPS / I	Иар
	Volunteer Monitor Name(s):				
	Sampling Event #1 (May)		Date Sampled: _	Time:	
(Secchi Depth :(feet)	>	Composite Samp	le Depth:	(feet)
	Weather Conditions (sunny, cloud	y, windy, etc.):_			
	Unusual Conditions (heavy rain, bo	oating, etc.):			
	Filtering Sample (if 50 cc could not b	oe filtered for thi	s sample, indicate an	iount filtered):	
	Sample 1: (cc)	Sample 2:	(cc)		
	Sampling Event #2 (June)		Date Sampled: _	Time: _	
	Secchi Depth : (feet)		Composite Samp	le Depth:	(feet)

What if my lake is too shallow to go 2x the Secchi depth

- Drop the sampler down to about a foot off the bottom
- Don't hit the bottom
- Record the depth as your "composite sample depth"

What if my Secchi disk is at the very bottom of the lake?

- Drop the sampler down to about a foot off the bottom
- Don't hit the bottom
- Record the depth as your "composite sample depth"

Rinse with lake water

Use clothes pin to mark the depth on the rope; release

Slowly bring to surface at a slow, steady rate

Want bottle 2/3 to 3/4 full Fill the 2 rectangular amber bottles.

5 drops of MgCO₃ preservative added to each bottle

Cold storage until returning to shore

CHLOROPHYLL-A

Step 2. Filtering the water sample

Let's go to the video tape!

□ Filtering section starts at 5:50.

https://www.youtube.com/watch?v=iCSAYkScxnY

Sample turn-in and submitting your data

- Make copies of your data forms for your records.
- Keep everything frozen! Sample turn in is still TBD due to COVID.
- 3. Your field notes need to be added to the database. Follow the instructions for data submission on our website, www.micorps.net, and do so by October 31.

Common Reasons for Sample Rejection

- □ Sample collected at the wrong time
 - Samples collected outside the assigned interval will be rejected
- Samples collected on the packaging slip. BLUE = BAD
- Samples not wrapped in foil
- □ Incorrect delivery
 - If you forget or can't turn your samples in to the drop-off location on the assigned date – CONTACT US for instructions on safe shipping. Unexpected shipments will thaw and be rejected.

2019 Data Report for

Devils Lake, Lenawee County

Site ID: 460179

41.9882°N, 84.2880°W

The CLMP is brought to you by:

Site ID: 460179

Depth (feet)

1999

0 1997

Devils Lake, Lenawee County 2019 CLMP Results

Secchi Disk Transparency (feet)

Year	# Readings	Min	Max	Average	Std. Dev	Carlson TSI
2019	5	8.0	16.0			
2015	24	7.0	17.0	11.1	1.7	42
1993-2013	93	6.0	25.0	10.9	3.9	43
2019 All						
CLMP Lakes	3392	1.5	50.0	12.8	5.8	42
0 5 10 15	•				• = 4	

2007

2011

2015

-

2017

8/13/2019

2019

Chlorophyll-a (parts per billion)

Spring Phosphorus (parts per billion)

2003

Year	# Samples	Min	Max	Average	Std. Dev	
2019	1	6.0	6.0	6.0	NA	
2014-2018	5	7.0	10.0	9.2	1.3	
1998-2013	13	<=3 W	11.0	7.8	2.3	
2019 All						
CLMP Lakes	220	<= 3	100.0	14.9	11.0	
Spring Total Phosphorus (ppb) P 8 12				<u>.</u>		•

2002

Summer Phosphorus (parts per billion)

Year	# Samples	Min	Max	Average	Std. Dev	Carlson TSI
2019	1	9.0	9.0	9.0	NA	36
2014-2018	5	8.0	12.0	10.0	1.9	37
1998-2013	12	8.0	15.0	9.8	2.1	37
2019 All CLMP						
Lakes	281	<= 3	65.0	12.8	9.3	38
Summer Total Phosphorus 0 (ppb) 1 1	997 20	002	200	7 201	2	2017

Dissolved Oxygen and Temperature Profile

2007

2012

Average TSI	2019	2014-2018
Devils Lake	37	37

Summary

AII CLMP			
Lakes	40	40	41

1993-2013

40

With an average TSI score of 37 based on 2019 chlorophyll-a and summer total phosphorus data, this lake is rated between the oligotrophic and mesotrophic lake classification. The lake leans slightly more oligotrophic than mesotrophic.

The low level of nutrients in the lake results in dissolved oxygen being available throughout the water column for the entire summer.

Long term trends indicate that the trophic status parameters have not changed beyond minor year-to year variation since monitoring began.

* = No sample received W= Value is less than the detection limit (<3 ppb) T= Value reported is less than the reporting limit (5 ppb). <1.0 = Chlorophyll-a: Sample value is less than limit of quantification (<1 ppb).

Other report components:

- Full sized graphs of each component
- Each Dissolved Oxygen/Temp profile
- Score the Shore results
- Aquatic Plant results

If you find a mistake:

- I will fix it quick
- Email me: psteen@hrwc.org

Summary			
Average TSI	2019	2014-2018	1993-2013
Devils Lake	37	37	40
All CLMP Lakes	40	40	41

With an average TSI score of 37 based on 2019 chlorophyll-a and summer total phosphorus data, this lake is rated between the oligotrophic and mesotrophic lake classification. The lake leans slightly more oligotrophic than mesotrophic.

The low level of nutrients in the lake results in dissolved oxygen being available throughout the water column for the entire summer.

Long term trends indicate that the trophic status parameters have not changed beyond minor year-to year variation since monitoring began.

What is Trophic Status Index?

Oligotrophic: Generally deep and clear lakes with little aquatic plant or algae growth. These lakes maintain sufficient dissolved oxygen in the cool, deep-bottom waters during late summer to support cold water fish, such as trout and whitefish.

Mesotrophic: Lakes that fall between oligotrophic and eutrophic. Mid-ranged amounts of nutrients.

Eutrophic: Highly productive eutrophic lakes are generally shallow, turbid, and support abundant aquatic plant growth. In deep eutrophic lakes, the cool bottom waters usually contain little or no dissolved oxygen. Therefore, these lakes can only support warm water fish, such as bass and pike.

Hypereutrophic: A specialized category of euthrophic lakes. These lakes exhibit extremely high productivity, such as nuisance algae and weed growth.

Working together to protect lakes...

Questions?